

Minimum electrophilicity principle in photocycloaddition formation of oxetanes

S. Noorizadeh*

Chemistry Department, College of Sciences, Shahid Chamran University, Ahwaz, Iran

Received 6 February 2007; revised 11 March 2007; accepted 19 March 2007

ABSTRACT: The regio- and stereoselectivity of some Paternó–Büchi reactions are studied within a density functional framework with B3LYP exchange-correlation energy functional and $6-31G^{**}$ basis set. It is shown that although in most cases the Minimum Polarizability and the Maximum Hardness Principles (MPP and MHP) successfully predict the major oxetane products of these reactions, but in all of the considered reactions, with no exception, the main products have the lesser electrophilicity values than the minor isomers, and therefore the Minimum Electrophilicity Principle (MEP) correctly predicts the most stable stereoisomer of the reaction. Copyright © 2007 John Wiley & Sons, Ltd.

KEYWORDS: cycloaddition reaction; Paternó-Büchi reaction; oxetane; maximum hardness principle; minimum polarizability principle; minimum electrophilicity principle; density functional

INTRODUCTION

Although the Paternó-Büchi reaction,¹ that is the photocycloaddition of ketons and aldehydes to olefins (Scheme 1), discovered nearly one century ago, but it is also a topic of studies.²⁻¹² As it is shown in Scheme 1, different regioisomers of oxetane can be formed depending on whether O atom in the excited carbonyl group makes a bond with the C_1 or C_2 atom of the ene molecule. Mechanistic studies^{13–16} have shown that there are two distinct mechanisms for this reaction, depending on the electron density at the ene molecule. For electron-rich olefins, addition generally proceeds through attack of the n- π^* carbonyl compound (singlet or triplet) on ground state olefin. The triplet additions appear to involve a long-lived biradical with time for bond rotation before ring closure,¹⁷ but short-lived biradical which produce in singlet addition has no sufficient time for bond rotations.¹⁸ In the other hand, for electron-deficient olefins the addition involves attack of the singlet excited carbonyl on the ene, which can react stereospecifically to give oxetane. But the experimental results show that the product ratios are not always simply predicted from the stability of the intermediate radicals.

The elucidation of the rules which govern intermolecular energy transfer is one of the most pressing and fascinating problems in organic chemistry. During the

**Correspondence to:* S. Noorizadeh, Chemistry Department, College of Sciences, Shahid Chamran University, Ahwaz, Iran. E-mail: noorizadeh s@scu.ac.ir

Copyright © 2007 John Wiley & Sons, Ltd.

past few years many attempts have been made to introduce new concepts, which are related to stability or reactivity of molecules. Prominent among these are the electronic chemical potential,¹⁹ hardness²⁰ and polarizability, whose analytical and operational definitions are given as follows:

$$\mu = \left(\frac{\partial E}{\partial N}\right)_{\nu(\vec{r})} \cong -\frac{\mathrm{IP} + \mathrm{EA}}{2} \tag{1}$$

$$\eta = \left(\frac{\partial^2 E}{\partial N^2}\right)_{\nu(\vec{r})} \cong \frac{\mathrm{IP} - \mathrm{EA}}{2} \tag{2}$$

$$\langle \alpha \rangle = \frac{1}{3} (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})$$
 (3)

where IP and EA are the first vertical ionization energy and electron affinity, respectively, and α_{xx} , α_{yy} , and α_{zz} are the diagonal elements of polarizability tensor. Following Janak's theorem,²¹ these parameters can be approximated in terms of the energies of HOMO and LUMO molecular orbitals as:

$$\mu' \cong \frac{\varepsilon_{\rm L} + \varepsilon_{\rm H}}{2} \tag{4}$$

$$\eta' \cong \frac{\varepsilon_{\rm L} - \varepsilon_{\rm H}}{2} \tag{5}$$

Based on these concepts some principles are found in computational chemistry. Two commonly used of these principles are the Maximum Hardness Principle (MHP)^{22–26} and the Minimum Polarizability Principle (MPP).²⁷ According to these principles, hardness and

Scheme 1. A general representation of the considered photocycloaddition reaction

polarizability are indices of stability or reactivity and the preferred direction of a chemical reaction is toward greater hardness and lesser polarizability. A formal proof of the MHP was given by Pearson and Chattaraj,²⁴ which relied on the constancy of both the external and chemical potentials. These conditions will put heavy constraints on the applicability of MHP. Although Sebastian²⁸ tried to show that the proof is in error, but 1 year later he reported some error in his used examples.²⁹ This principle was also proved by using variational principles.³⁰ A constructive discussion on MHP is collected by Geerlings *et al.*³¹ in a review article. Since these principles were proposed, numerous calculations^{32–37} have been carried out to verify these principles; but in some cases^{38–41} they were somewhat broken down.

Parr *et al.*⁴² have proposed electrophilicity index as a measure of energy lowering due to the maximal electron flow between donor and acceptor. They defined electrophilicity index as:

$$\omega = \frac{\mu^2}{2\eta} \cong \frac{(\mathrm{IP} + \mathrm{EA})^2}{4(\mathrm{IP} - \mathrm{EA})}$$
(6)

Using Janak's approximation,²¹ this relation has the following form:

$$\omega' \cong \frac{\left(\varepsilon_{\rm L} + \varepsilon_{\rm H}\right)^2}{4(\varepsilon_{\rm L} - \varepsilon_{\rm H})} \tag{7}$$

The usefulness of this quantity as a stability descriptor has been demonstrated by many authors^{43–48} and its utility has been documented in a comprehensive review article.⁴⁹ Some authors considered the variation of electrophilicity along the reaction path.^{50,51} Recently Noorizadeh and Maihami⁵² showed that the major product of a Diels-Alder reaction has always less electrophilicity than the minor product and therefore, they have claimed that the electrophilicity index can be used as an indicator for regioselectivity in this reaction. It is also shown that for those exothermic chemical reactions in which the number of moles decreases or at least remains constant, the most stable species (products) have the lowest sum of electrophilicities. Therefore it is concluded that It seems that there is a tendency in atoms to arrange themselves so that the obtained molecule reaches the minimum electrophilicity. This rule is called the Minimum Electrophilicity Principle (MEP).

Copyright © 2007 John Wiley & Sons, Ltd.

In the present study we apply the MHP, MPP, and MEP to interpret the regio- and stereoselectivity in some Paternó–Büchi reactions and compare the validity of the old principles (MHP and MPP) with the new one (MEP) in the considered reactions.

COMPUTATIONAL DETAILS

Equilibrium geometries for the products of different Paternó-Büchi reactions (79 stereoisomers) were obtained by full optimization within a density functional framework (B3LYP exchange-correlation energy functional⁵³⁻⁵⁶) and using the most popular basis sets, 6-31G**. Vibrational frequencies were also calculated for optimized structures in order to check if there was a true minimum. For each structure zero-point energy (ZPE) correction had been taken into account in calculating the energies. Polarizabilities were evaluated using Eqn (3). The values of the electronic chemical potential and the chemical hardness were obtained by using Janak's approximation from the one-electron energies of the HOMO and LUMO frontier molecular orbitals (Eqns (4) and (5)). With these quantities at hand, the global electrophilicity was calculated for each molecule using Eqn (7). The electronic chemical potential, hardness and electrophilicity values were also calculated for each oxetane molecule using vertical ionization potential and electron affinity energies (Eqns (1), (2), and (6)). To compute these parameters we only need to do a geometry optimization on the neutral molecules (N-electron system), plus single point calculations on the cation (N-1) and anion (N+1) forms of the molecule at the neutral geometry. All the calculations were performed with the GAUSSIAN 98W program.⁵⁷

RESULTS AND DISCUSSION

A number of Paternó–Büchi reactions between three simple carbonyl compounds (formaldehyde, acetaldehyde, and acetone) and seven olefins (A=1,3 butadiene; B=1,3 pantadiene; C=hydroxy ethylene; D=methoxy ethylene; E= ethoxy ethylene; F=1-methoxy 1-butene, and G=1,2 dihydro furane), which are shown in Scheme 2, are considered in this study. As it was mentioned, two different regioisomers are expected for

Scheme 2. The considered Paternó–Büchi reactions in this study

each reaction (B molecule, i.e. 1,3 pantadiene has possibilities of four different kinds of product formation), but the predominant oxetane product is that resulting from attack at the more highly substituted double bond.⁵⁸ Therefore, the first oxetane in each reaction is the experimentally major regioisomer^{4,58–62} in the presented scheme. These regioselectivities found agree well with the polarization of the carbonyl group in its n- π^* excited state⁶³ and correspond to the general finding that electron-deficient alkenes react with triplet ketons to yield head-to-head adducts, while electron-rich alkenes lead to head-to-tail adducts.

To study the stereoselectivity of these reactions from theoretical point of view, the structures of different possible stereoisomers of the oxetane products (79 isomers) which are shown in Fig. 1 are considered here. According to the photochemistry rules and molecular orbital interactions,⁶⁴ it is expected that in the reactions of

acetaldehyde with olefins, the stereoisomers in which both of the substituents on the carbon of carbonyl and C2 atom of olefins are on the same side of ring (A6, B10, B16, B17, C6, D6, E6, F10, F11, and G3) are more favored than the trans isomers (A5, B9, B15, C5, D5, E5, F9, F12, and G5). All of the stable isomers in Fig. 1 are bolded. Structures of different stereoisomers were optimized and some parameters were calculated for each isomer. The obtained frontier molecular orbital energies (HOMO and LUMO) and polarizability values, with the calculated hardness and electrophilicity by using Janak's approximation (Eqns (5) and (7)) for these stereoisomers are gathered in Table 1. In this table, the lesser polarizability, greater hardness, and lesser electrophilicity values for each reaction are bolded to check the validity of the MPP, MHP, and MEP in prediction of the major product of a reaction. The failed principles are also given in the last column of the table. From the obtained results it

Figure 1. The considered stereoisomers in this study

Figure 1. (Continued)

Copyright © 2007 John Wiley & Sons, Ltd.

MEP IN PHOTOCYCLOADDITION FORMATION OF OXETANES

Figure 1. (Continued)

is found that nearly for most of the reactions (with six exceptions) the MPP is valid. Since the calculated polarizability is very sensitive to the quality of the basis set,³⁸ it seems that these exceptions may arises from the weakness of the used basis set ($6-31G^{**}$) and therefore the implementation of a larger basis set should minimize errors due to basis set incompleteness.

In contrast with the MPP, two other principles (MHP and MEP) are not so successful in predicting the major

products of the considered Paternó–Büchi reactions and nearly in all cases are failed. This difficulty may arise from the Janak's approximation, which seems to be inadequate in calculating the electrophilicity and hardness of these isomers. Therefore to remove this difficulty, the hardness and electrophilicity values for each oxetane were recalculated by using the ionization potential and electron affinity of the corresponding molecule (Eqns (2) and (6)), which are collected in Table 2. The results show

S. NOORIZADEH

Table 1. Calculated frontier molecular orbital energies, polarizability, hardness, and electrophilicity values for different regioisomers of the considered reactions, using B3LYP/6-31G^{**} method and the Janak's approximation

Molecule	$\epsilon_{ m H}$	$\varepsilon_{\rm L}$	α	η'	ω'	Failed principle
A1	-0.24516	0.01982	53.272	0.13249	0.04791	MEP, MHP
A2	-0.24448	0.01309	52.994	0.12879	0.05197	
A3	-0.24416	0.0208	64.131	0.13248	0.04707	MEP, MHP
A4	-0.24362	0.0218	64.348	0.13269	0.04637	
A5	-0.24253	0.0143	64.381	0.12843	0.05068	
A6	-0.24247	0.0131	63.635	0.12777	0.05148	
A7	-0.24256	0.02197	74.685	0.13227	0.04599	MEP, MHP
A8	-0.24042	0.01354	74.531	0.12698	0.05067	
B1	-0.23515	0.02752	66.016	0.13134	0.04103	MEP
B2	-0.24164	0.02169	65.575	0.13167	0.04593	
B3	-0.24326	0.01961	64.547	0.13144	0.04757	MEP, MHP, MPP
B4	-0.24374	0.01775	53.734	0.13075	0.04883	
B5	-0.24337	0.00928	65.303	0.12633	0.05422	
B6	-0.24296	0.00883	64.828	0.12590	0.05443	
B7	-0.23594	0.01385	79.184	0.12489	0.04937	MEP, MHP
B8	-0.23381	0.02980	77.144	0.13181	0.03947	,
B9	-0.23927	0.02283	77.124	0.13105	0.04468	
B10	-0.23987	0.02156	76.235	0.13072	0.04558	
B11	-0.24236	0.02082	75.308	0.13159	0.04662	MEP. MHP. MPP
B12	-0.24105	0.02234	75.150	0.13170	0.04541	,,
B13	-0.24172	0.01863	74.326	0 13015	0.04780	
B14	-0.24201	0.01969	74 821	0.13085	0.04722	
B15	-0.24102	0.01533	75.214	0.12818	0.04967	
B16	-0.24102	0.01303	74 567	0.12010	0.05042	
B17	_0.24070	0.01021	75.844	0.12557	0.05299	
B18	-0.23312	0.03001	87 528	0.12557	0.03277	MED WHD
B10	_0.23786	0.01677	87 500	0.12732	0.03717	
B20	0.23780	0.01077	85 553	0.12752	0.04799	MED MHD MDD
B20 B21	0.23997	0.02233	81.830	0.13113	0.04515	
B21 B22	-0.24103	0.01999	85 507	0.13031	0.04030	
D22 D23	-0.23900	0.01444	86 384	0.12075	0.04970	
D23	-0.25958	0.00991	36 8103	0.12403	0.03281	MED MUD MDD
C^{1}	-0.23084	0.07854	30.0103	0.10739	0.02377	WILLE, WITTE, WIEF
C_2	-0.24390	0.03838	47 7012	0.15224	0.02376	MED MUD MDD
C3	-0.23322	0.07743	47.7013	0.10033	0.02370	WILLE, WITTE, WIEF
C4 C5	-0.23488	0.06333	47.000	0.15240	0.02270	
	-0.24300	0.00333	47.9237	0.15349	0.02046	
C0 C7	-0.24433	0.03973	47.3703	0.13214	0.02607	MED MIID MDD
C/	-0.23521	0.07071	57.9744	0.10195	0.02571	MEP, MITP, MIPP
Co	-0.24192	0.00119	J7.9734 49.120	0.13133	0.02094	MED MIID
DI	-0.23002	0.09100	48.129	0.1/414	0.01953	MEP, MHP
D2	-0.24031	0.00900	40.051	0.13798	0.02409	MED MIID
D3	-0.25515	0.09552	50.970	0.17552	0.01817	MEP, MHP
D4	-0.23383	0.09713	59.200	0.1/040	0.01/80	
D5	-0.24354	0.07813	58.830 58.550	0.16084	0.02126	
D0	-0.24399	0.07393	50.559	0.13897	0.02274	
D/	-0.25442	0.09141	09.014	0.17293	0.01921	MEP, MHP
D8	-0.24102	0.07413	00.949	0.13789	0.02221	
EI	-0.25521	0.09462	59.431	0.17492	0.01843	MEP, MHP
E2	-0.24332	0.07180	59.20 7	0.13839	0.02372	
E3	-0.25402	0.09704	70.233	0.17552	0.01755	MEP, MHP
E4	-0.25230	0.09/11	/0.330	0.1/4/4	0.01/24	
ej ea	-0.24181	0.07023	09.720	0.15912	0.02156	
E0 E7	-0.24193	0.0/29/	09.315	0.15745	0.02266	MED MUD
E/	-0.25306	0.09199	80.973	0.1/253	0.021.42	MEP, MHP
Eð	-0.23972	0.07538	79.926	0.15755	0.02143	
	-0.25505	0.08501	69.310	0.1/003	0.02126	MEP, MHP
F2	-0.25579	0.08463	69.153	0.17021	0.02151	
F3	-0.24399	0.07468	69.556	0.15934	0.02249	
F4	-0.24327	0.07156	69.057	0.15742	0.02341	
F5	-0.25383	0.08911	80.207	0.17147	0.01978	MEP, MHP, MPP
F6	-0.25211	0.08407	80.023	0.16809	0.02100	

(Continues)

Table 1. (Continued)

Molecule	\mathcal{E}_{H}	$\epsilon_{ m L}$	α	η'	ω'	Failed principle
F7	-0.25628	0.08056	79.877	0.16842	0.02292	
F8	-0.25429	0.08808	80.277	0.17119	0.02017	
F9	-0.24161	0.08145	80.313	0.16153	0.01985	
F10	-0.24163	0.07593	80.137	0.15878	0.02162	
F11	-0.24237	0.07233	79.902	0.15735	0.02297	
F12	-0.24074	0.07797	80.001	0.15936	0.02078	
F13	-0.25115	0.08291	90.534	0.16703	0.02119	MEP, MHP
F14	-0.25476	0.07901	90.657	0.16689	0.02314	
F15	-0.23970	0.07419	90.545	0.15695	0.02182	
F16	-0.24019	0.07176	90.382	0.15598	0.02274	
G1	-0.25801	0.08185	53.6543	0.16993	0.02283	MEP
G2	-0.24943	0.08243	54.0777	0.16593	0.02101	
G3	-0.25568	0.07971	64.3313	0.16770	0.02308	MEP
G4	-0.25611	0.08694	64.6881	0.17153	0.02086	
G5	-0.24442	0.08867	65.0183	0.16655	0.01821	
G6	-0.24795	0.08670	65.1323	0.16733	0.01942	
G7	-0.25392	0.07809	74.9083	0.16601	0.02328	MEP
G8	-0.24341	0.08413	75.5807	0.16377	0.01936	

The major isomers are bolded. All values are in a.u.

that by using these more accurate relations, only in four cases the MHP is broken down (C and E molecules with acetone, F molecule with all of the carbonyl compounds); whereas surprisingly in all reactions, with no exception, the MEP is valid and this principle correctly predicts the main product of each reaction. In fact in all reactions, the experimentally observed predominant products are consistently associated with lower values of electrophilicity and it seems that the MEP is the most successful principle in the study of a Paternó–Büchi reaction. Again the failure of MHP in some cases may arises from the weakness of the used basis set and the difference between the chemical potentials of the compared molecules; because as it is mentioned in the introduction section, the constancy of chemical potential is one of the conditions of MHP. But these difficulties are not seen in electrophilicity because as it was shown in our previous paper,⁵² this index is not so dependent to the selected basis set and the obtained trend for the electrophilicities of a given series of molecules does not vary with the change in the used basis set. In the other hand, the results show that the *cis* stereoisomer of each oxetane has lesser electrophilicity

Table 2. Calculated vertical ionization energy, electron affinity, hardness and electrophilicity values for different regioisomer of the considered reactions, using B3LYP/6-31G^{**} method

Molecule	IE	EA	η	ω	Failed principle
Al	0.32939	0.10597	0.11171	0.21210	
A2	0.33282	0.10085	0.11598	0.20269	
A3	0.32522	0.10613	0.10954	0.21232	
A4	0.32477	0.10650	0.10913	0.21304	
A5	0.32656	0.10053	0.11301	0.20175	
A6	0.32741	0.09808	0.11467	0.19735	
A7	0.32101	0.10489	0.10805	0.20984	
A8	0.32221	0.09661	0.11280	0.19439	
B1	0.31475	0.10753	0.10361	0.21514	
B2	0.32008	0.10315	0.10846	0.20644	
B3	0.32463	0.10261	0.11101	0.20554	
B4	0.32572	0.10044	0.11264	0.20154	
B5	0.32811	0.09498	0.11657	0 19195	
B6	0.33641	0.09335	0.12153	0.18996	
B7	0.31482	0.10286	0 10598	0 20576	
B8	0.31132	0.10839	0.10146	0.21702	
B9	0.31249	0.09170	0.11039	0.18499	
B10	0.31602	0.10066	0.10768	0.20154	

(Continues)

|--|

Table 2. (Continued)
------------	------------

Molecule	IE	EA	η	ω	Failed principle
B11	0.32089	0.10329	0.10880	0.20671	
B12	0.31951	0.10401	0.10775	0.20809	
B13	0.32066	0.10069	0.10998	0.20178	
B14	0.32094	0.10123	0.10986	0.20280	
B15	0.32252	0.09998	0.11127	0.20052	
B16	0.32264	0.09775	0.11245	0.19645	
BI7	0.33283	0.09273	0.12005	0.18857	
B18 B10	0.30849	0.10/0/	0.10071	0.21433	
D19 P20	0.31099	0.09400	0.10670	0.20518	
B20 B21	0.31761	0.10255	0.10878	0.20044	
B22	0.31749	0.09609	0.11070	0.19315	
B23	0.31911	0.09166	0.11373	0.18546	
C1	0.35718	0.15393	0.10163	0.32131	
C2	0.34484	0.13691	0.10397	0.27904	
C3	0.34706	0.14800	0.09953	0.30781	
C4	0.34649	0.15049	0.09799	0.31504	
C5	0.33645	0.14008	0.09818	0.28911	
C6	0.33960	0.13366	0.10297	0.27189	
C7	0.34086	0.13642	0.10222	0.27857	MHP
C8	0.33119	0.13193	0.09963	0.26910	
DI D2	0.34888	0.10178	0.09355	0.34843	
D2 D3	0.33033	0.14201	0.09077	0.29050	
D3 D4	0.34372	0.16161	0.09106	0.35054	
D5	0.32872	0.14664	0.09104	0.31026	
D6	0.33449	0.14112	0.09668	0.29246	
D7	0.33839	0.15273	0.09283	0.32479	
D8	0.32446	0.13746	0.09350	0.28525	
E1	0.34385	0.16002	0.09192	0.34526	
E2	0.33265	0.14171	0.09547	0.29462	
E3	0.33838	0.15720	0.09059	0.33888	
E4	0.33543	0.15941	0.08801	0.34779	
E5	0.32383	0.14020	0.09182	0.29316	
E0 E7	0.32/32	0.15738	0.09497	0.20472	MUD
E7 F8	0.33437	0.13651	0.09202	0.31911	WITT
F1	0.34310	0.13051	0.09730	0.31048	MHP
F2	0.34281	0.14675	0.09803	0.30561	1,1111
F3	0.32847	0.14300	0.09274	0.29962	
F4	0.32670	0.13906	0.09382	0.28904	
F5	0.33758	0.15048	0.09355	0.31828	MHP
F6	0.33507	0.14586	0.09461	0.30561	
F7	0.34144	0.14072	0.10036	0.28957	
F8	0.33656	0.14708	0.09474	0.30861	
F9 F10	0.32180	0.14352	0.08914	0.30363	
F 10 F11	0.32384	0.13841	0.09272	0.28809	
Г11 F12	0.32637	0.13470	0.09091	0.27090	
F13	0.32000	0.14099	0.09474	0.29692	MHP
F14	0.33578	0.13683	0.09948	0.28067	1,1111
F15	0.31782	0.13296	0.09243	0.27480	
F16	0.31873	0.13118	0.09378	0.26983	
G1	0.34803	0.14865	0.09969	0.30933	
G2	0.33563	0.15473	0.09045	0.33229	
G3	0.34239	0.14314	0.09964	0.29578	
G4	0.34151	0.15038	0.09557	0.31649	
G5	0.32682	0.15173	0.08755	0.32698	
G6	0.33010	0.15292	0.08859	0.32919	
G/	0.33681	0.13836	0.09923	0.20555	
60	0.32220	0.14421	0.08899	0.30355	

The major isomers are bolded. All values are in a.u.

than the *trans* form of the molecule and therefore are the major stereoisomers for the considered reaction; which is in accordance with the photochemistry rules. It is also mentioned that for those cases in which all of the considered principles are valid, the same stereoisomers are introduced as the stable and major products of that reaction. For example, in the reaction of 1,3 butadiene (A molecule) with acetaldehyde all principles predict the A6 as the major isomer of the reaction.

Therefore we have claimed that *at equilibrium, a* system attempts to arrange its electronic structure to generate species with the lesser electrophilicity so that more stable isomers correspond to lesser electrophilicity values. To generalize this principle, its validity is checking in some other organic reactions in our research group.

CONCLUSION

Although the MPP and MHP are not always successful in predicting the major product of a photocycloaddition reaction of a carbonyl group with an olefine (Paternó–Büchi reaction), but the results suggest that not only the MEP is able to predict correctly the regioselectivity during a photocycloaddition reaction, but also successfully predicts the major stereoisomer of such reaction. Therefore we have claimed that at equilibrium, a system attempts to arrange its electrophilicity so that more stable isomers correspond to lesser electrophilicity values.

REFERENCES

- 1. Paternó E, Chieffi G. Gazz. Chim. Ital. 1909; 39: 341-346.
- 2. Büchi G, Inman CG, Lipinsky ES. J. Am. Chem. Soc. 1954; 76:
- 4327–4331. 3. Zimmerman H. *Science* 1966; **153**: 837–844.
- 4. Turro NJ, Wriede PA. J. Am. Chem. Soc. 1968; **90**: 6863–6864.
- 5. Abe M, Torii E, Nojima M. J. Org. Chem. 2000; **65**: 3426–3431.
- Zimmerman H, Wright CW. J. Am. Chem. Soc. 1992; 114: 363–365.
- 7. Palmer IJ, Ragazos IN, Bernardi F, Olivucci M, Robb MA. J. Am. Chem. Soc. 1994; 116: 2121–2132.
- Sengupta D, Chandra AK, Nguyen MT. J. Org. Chem. 1997; 62: 6404–6406.
- Kollenz G, Terpetschnig E, Sterk H, Peters K, Peters EM. Tetrahedron 1999; 55: 2973–2984.
- Auria MD, Emanuele L, Poggi G, Racioppi R, Romaniello G. *Tetrahedron* 2002; 58: 5045–5051.
- Auria MD, Emanuele L, Racioppi R. J. Photochem. Photobiol. A 2004; 163: 103–111.
- Capozzo M, Auria MD, Emanuele L, Racioppi R. J. Photochem. Photobiol. A 2007; 185: 38–43.
- Yang NC, Loeschen R, Mitchell D. J. Am. Chem. Soc. 1967; 89: 5465–5466.
- 14. Arnold DR, Hinman RL, Glick AH. Tetrahedron Lett. 1964; 5: 1425–1430.
- Yang NC, Nussim M, Jorgenson MJ, Murov S. *Tetrahedron Lett.* 1964; 48: 3657–3664.
- Turro NJ, Wriede P, Dalton JC, Arnold D, Glick A. J. Am. Chem. Soc. 1967; 89: 3950–3952.
- 17. Turro NJ, Wriede PA. J. Am. Chem. Soc. 1970; 92: 320-329.

- Turro NJ, Lee C, Schore N, Baltrop J, J. Carless H.A. J. Am. Chem. Soc. 1971; 93: 3079–3080.
- Parr RG, Donnelly RA, Levy M, Palke WE. J. Chem. Phys. 1978; 68: 3801–3807.
- 20. Parr RG, Pearson RG. J. Am. Chem. Soc. 1983; 105: 7512-7516.
- 21. Janak JF. Phys. Rev. B 1978; 18: 7165-7168.
- Pearson RG. Chemical Hardness: Applications from Molecules to Solids. Wiley-VCH Verlay GMBH: Weinheim, 1997.
- 23. Pearson RG. Acc. Chem. Res. 1993; 26: 250-255.
- 24. Pearson RG, Chattaraj PK. J. Am. Chem. Soc. 1991; 113: 1854–1855.
- 25. Chattaraj PK, Liu GH, Parr RG. Chem. Phys. Lett. 1995; 237: 171–176.
- 26. Chattaraj PK. Proc. Indian Natl. Sci. Acad. Part A 1996; 62: 1133–1137.
- Chattaraj PK, Sengupta S. J. Phys. Chem. 1996; 100: 16126–16130.
- 28. Sebastian KL. Chem. Phys. Lett. 1994; 231: 40-42.
- 29. Sebastian KL. Chem. Phys. Lett. 1995; 236: 621.
- 30. Ayers PW, Parr RG. J. Am. Chem. Soc. 2000; 122: 2010-2018.
- 31. Geerlings P, De Proft F, Langenaeker W. Chem. Rev. 2003; 103: 1793–1873.
- 32. Zhou ZX, Parr RG, Garst JF. Tetrahedron Lett. 1988; 29: 4843–4846.
- 33. Zhang YL, Yang ZZ. Int. J. Quantum Chem. 2006; 106: 1723–1735.
- Pasha FA, Srivastava HK, Singh PP. Int. J. Quantum Chem. 2005; 104: 87–100.
- 35. Perez P, Contreras R. Chem. Phys. Lett. 1996; 256: 15-20.
- 36. Chattaraj PK, Cedillo A, Parr RG. Chem. Phys. 1996; 204: 429-437.
- Van Cauter K, Hemelsoey K, Van Spey-broeck V, Reyniers MF, Waroquier M. Int. J. Quantum Chem. 2005; 102: 454–460.
- 38. Noorizadeh S. J. Mol. Struct. (Theochem) 2005; 713: 27-32.
- Anandan K, Kolandaivel P, Kumaresan R. Int. J. Quantum Chem. 2005; 104: 286–298.
- 40. Anandan K, Kolandaivel P, Kumaresan R. *Int. J. Quantum Chem.* 2005; **103**: 127–139.
- 41. Gomez B, Fuentealba P, Contreras R. *Theor. Chem. Acc.* 2003; **110**: 421–427.
- 42. Parr RG, von Szentpaly L, Liu S. J. Am. Chem. Soc. 1999; 121: 1922–1924.
- Arroyo P, Picher MT, Domingo LR, Terrier F. *Tetrahedron*. 2005; 61: 7359–7365.
- Bosca F, Fernandez L, Heelis PF, Yano Y. J. Photochem. Photobiol. B Biol. 2000; 55: 183–187.
- 45. Aizman A, Contreras R, Prez P. Tetrahedron 2005; 61: 889-895.
- Elango M, Parthasarathi R, Subramanian V, Sarkar U, Chattaraj PK. J. Mol. Struct. (Theochem) 2005; 723: 43–52.
- Parthasarathi R, Padmanabhan J, Elango M, Subramanian V, Chattaraj PK. Chem. Phys. Lett. 2004; 394: 225–230.
- Contreras R, Andres J, Domingo LR, Castillo R, Prez P. Tetrahedron 2005; 61: 417–422.
- Chattaraj PK, Sarkar U, Roy DR. Chem. Rev. 2006; 106: 2065–2091.
- Chamorro E, Chattaraj PK, Fuentealba P. J. Phys. Chem. A 2003; 107: 7068–7072.
- Parthasarathi R, Elango M, Subramanian V, Chattaraj PK. *Theor. Chem. Acc.* 2005; 113: 257–266.
- Noorizadeh S, Maihami H. J. Mol. Struct. (Theochem) 2006; 763: 133–144.
- 53. Becke AD. Phys. Rev. A 1988; 38: 3098-3100.
- 54. Lee C, Yang W, Parr RG. Phys. Rev. B 1988; 37: 785-789.
- Miehlich B, Savin A, Stoll H, Preuss H. Chem. Phys. Lett. 1989; 157: 200–206.
- 56. Becke AD. J. Chem. Phys. 1993; 98: 5648-5652.
- 57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Jr, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng

J. Phys. Org. Chem. 2007; **20:** 514–524 DOI: 10.1002/poc

CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA. *Gaussian 98, Revision A.7*, Gaussian, Inc., Pittsburgh PA, 1998.

- 58. Dowd P, Gold A, Sachdev K. J. Am. Chem. Soc. 1970; 92: 5725-5726.
- 59. Baltrop J, Coyle JD. J. Am. Chem. Soc. 1972; 94: 8761-8768.
- 60. Schroeter SH, Orlando CM. J. Org. Chem. 1969; 34: 1181-1187.
- 61. Shima K, Sakurai H. Bull. Chem. Soc. Jpn 1969; 42: 849.
- 62. Carless HAJ, Haywood DJ. Chem. Soc., Chem. Commun. 1980; 22: 1067-1068.
- 63. Demuth M, Gamal M. Synthesis 1989; 3: 145–162.
 64. Turro NJ. Modern Molecular Photochemistry. Univ. Science Books: Sausalito, California, 1991.